Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070604

RESUMO

The strategy of nitrogen sufficiency conversion can improve ammonium nitrogen (NH4+-N) removal with microalgal cells from ammonium-rich wastewater. We selected and identified one promising isolated algal strain, NCU-7, Chlorella sorokiniana, which showed a high algal yield and tolerance to ammonium in wastewater, as well as strong adaptability to N deprivation. The transition from N deprivation through mixotrophy (DN, M) to N sufficiency through autotrophy (SN, P) achieved the highest algal yields (optical density = 1.18 and 1.59) and NH4+-N removal rates (2.5 and 4.2 mg L-1 d-1) from synthetic wastewaters at two NH4+-N concentrations (160 and 320 mg L-1, respectively). Algal cells in DN, M culture obtained the lowest protein content (20.6%) but the highest lipid content (34.0%) among all cultures at the end of the stage 2. After transferring to stage 3, the lowest protein content gradually recovered to almost the same level as SN, P culture on the final day. Transmission electron microscopy and proteomics analysis demonstrated that algal cells had reduced intracellular protein content but accumulated lipids under N deprivation by regulating the reduction in synthesis of protein, carbohydrate, and chloroplast, while enhancing lipid synthesis. After transferring to N sufficiency, algal cells accelerated their growth by recovering protein synthesis, leading to excessive uptake of NH4+-N from wastewater. This study provides specific insights into a nitrogen sufficiency conversion strategy to enhance algal growth and NH4+-N removal/uptake during microalgae-based ammonium-rich wastewater treatment.


Assuntos
Compostos de Amônio , Chlorella , Microalgas , Purificação da Água , Compostos de Amônio/metabolismo , Águas Residuárias , Chlorella/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Biomassa , Lipídeos
2.
Chemosphere ; 337: 139416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414296

RESUMO

Anaerobic digestion piggery effluent (ADPE) shows high chromaticity and ammonium levels, severely inhibiting algal growth. Fungal pretreatment has great potential for decolorization and nutrient removal from wastewater, which coupled with microalgal cultivation may be a reliable strategy for sustainable ADPE resource utilization. In this study, we selected and identified two locally isolated eco-friendly fungal strains for ADPE pretreatment, and fungal culture conditions were optimized for decolorization and ammonium nitrogen (NH4+-N) removal. Subsequently, the underlying mechanisms of fungal decolorization and nitrogen removal were investigated, and the feasibility of using pretreated ADPE for algal cultivation was explored. The results showed that two fungal strains were identified as Trichoderma harzianum and Trichoderma afroharzianum, respectively, presenting good growth and decolorization performance for ADPE pretreatment. The optimized culture conditions were as follows: 20% ADPE, 8 g L-1 glucose, initial pH 6, 160 rpm, 25-30 °C, and 0.15 g L-1 initial dry-weight. ADPE decolorization was mainly caused by fungal biodegradation of color-related humic substances through manganese peroxidase secretion. The removed nitrogen was completely converted into fungal biomass as nitrogen assimilated, ca. 90% of which was attributed to NH4+-N removal. The pretreated ADPE significantly improved algal growth and nutrient removal, demonstrating the feasibility of developing an eco-friendly fungi-based pretreatment technology.


Assuntos
Compostos de Amônio , Microalgas , Nitrogênio/metabolismo , Anaerobiose , Desnitrificação , Águas Residuárias , Microalgas/metabolismo , Biomassa , Compostos de Amônio/metabolismo
3.
Front Bioeng Biotechnol ; 11: 1219103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456717

RESUMO

Anaerobic digestion piggery effluent (ADPE) with a quite high ammonium (NH4 +) concentration and turbidity (dark brown color) generally requires high dilution before microalgae cultivation, owing to its NH4 + toxicity and color inhibition to algal growth. An integrated pretreatment strategy of ammonia stripping and chemical flocculation may be a more practical pretreatment procedure for enhancing algae yield and nutrient recovery from anaerobic digestion piggery effluent. In this study, we determined the optimum pretreatment strategy of anaerobic digestion piggery effluent for subsequent microalgae cultivation and nutrient recovery. The results showed that the integrated anaerobic digestion piggery effluent pretreatment strategy of high-temperature ammonia stripping and chemical flocculation at a mixed dosage of 2 g L-1 polyaluminum chloride (PAC) and 40 mg L-1 cationic polyacrylamide (C-PAM), and 50 mg L-1 ammonium nitrogen (NH4 +-N) enrichment provided maximum algal yield (optical density = 1.8) and nutrient removal (95.2%, 98.7%, 99.3%, and 78.5% for the removal efficiencies of total nitrogen, NH4 +-N, total phosphorus, and chemical oxygen demand, respectively) from anaerobic digestion piggery effluent. The integrated pretreatment strategy is expected to become a more practical pretreatment procedure for enhancing algae yield and nutrient recovery from anaerobic digestion piggery effluent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...